Investigación

El objetivo de LPI es desarrollar, promover y difundir investigación en los diversos campos de la Analítica de Negocios.

Las investigaciones que se van a realizar a través de LPI tienen un perfil múltiple: en primer lugar construyen aplicaciones basadas en conocimientos y tecnologías previas (investigación aplicada); en forma paralela requieren de un componente de análisis (investigación analítica) que contrasta datos y variables en distintos escenarios de trabajo; finalmente las investigaciones se desarrollan en un ambiente organizacional en el que están presentes personas, grupos y organizaciones privadas y públicas las cuales cumplen el papel de ser la fuente de datos para ser analizados (investigación de campo).

Las áreas de Investigación incluyen:

Analitica de NegociosDashboards

Denominada tambien Business Analytics, es el estudio de los datos generados por la empresa a través del análisis de procesos y análisis estadístico.
Este estudio implica la elaboración de modelos predictivos, la aplicación de técnicas de optimización y la comunicación de estos resultados a ejecutivos de la empresa, socios de negocios e incluso a clientes. Comprende los siguientes campos de investigación:

  • Investigación de mercado.
  • Aplicaciones analíticas para las Relaciones con los Clientes(CRM).
  • Aplicaciones analíticas de la Cadena de Suministros(SCM).
  • Aplicaciones analíticas de Operaciones de Servicios(SRM).
  • Aplicaciones analíticas para la Fuerza de Ventas.
  • Aplicaciones analíticas para el Planeamiento de la Producción. 

 

Analitica PredictivaData mining

Es una forma de análisis avanzado que utiliza datos nuevos e históricos para predecir la actividad futura, el comportamiento y las tendencias de las principales variables del negocio. Implica la aplicación de tecnicas de análisis estadístico y algoritmos de aprendizaje automatico a conjuntos de datos para crear modelos de análisis que situen un valor numerico o puntuación en la probabilidad que ocurra un evento particular.

Un campo de aplicación amplio es la minería de datos o datamining.  El datamining, es el conjunto de técnicas y tecnologías que permiten explorar grandes bases de datos, de manera automática o semiautomática, con el objetivo de encontrar patrones repetitivos, tendencias o reglas que expliquen el comportamiento de los datos en un determinado contexto. Algunos métodos de Minería de Datos incluyen:

  • Árboles de decisión y reglas. Regresión no lineal y métodos de clasificación.
  • Redes Neuronales (Backprogagation). Métodos basados en ejemplos. Método del vecino más cercano.
  • Modelos gráficos de dependencias probabilísticas. Redes Bayesianas y asociaciones. Modelos de aprendizaje relacional (ILP).

 

Aprendizaje de máquina y automatización.Robots

El aprendizaje de maquina esta orientado a que sistemas y equipos sean capaces de aprender su oficio en forma autónoma, y representa la base de los sistemas de inteligencia artificial cuyo proposito es el de pensar y actuar en forma autónoma sin dependencia del hombre. La diferencia es clara ya que las primeras tienen un campo de movimiento mientras que las segundas no lo tienen.

Algunas aplicaciones que se están creando en este campo incluyen:

  • Generación de lenguaje natural. Reconocimiento de voz.
  • Agentes virtuales.
  • Optimización de hardware. Toma de decisiones.
  • Biometricas. Robots. Análisis de texto.
 

 

Anuncios